Processing math: 100%

Set up CellsΒΆ

In [1]:
import sys
sys.path.append("C:/Users/msachde1/Downloads/Research/Development/mgwr")
In [2]:
import warnings
warnings.filterwarnings("ignore")
import pandas as pd
import numpy as np

from mgwr.gwr import GWR
from spglm.family import Gaussian, Binomial, Poisson
from mgwr.gwr import MGWR
from mgwr.sel_bw import Sel_BW
import multiprocessing as mp
pool = mp.Pool()
from scipy import linalg
import numpy.linalg as la
from scipy import sparse as sp
from scipy.sparse import linalg as spla
from spreg.utils import spdot, spmultiply
from scipy import special
import libpysal as ps
import seaborn as sns
import matplotlib.pyplot as plt
from copy import deepcopy
import copy
from collections import namedtuple
import spglm

Fundamental equations for Binomial MGWRΒΆ

l=logb(p/(1βˆ’p))=(βˆ‘Ξ²kxk,i)

where xk,1 is the kth explanatory variable in place i, 𝛽ks are the parameters and p is the probability such that p = P( Y = 1 ).

By exponentiating the log-odds:

p/(1βˆ’p)=b𝛽0+𝛽1x1+𝛽2x2

It follows from this - the probability that Y = 1 is:

p=(b𝛽0+𝛽1x1+𝛽2x2)/(b𝛽0+𝛽1x1+𝛽2x2+1) = 1/(1+bβˆ’π›½0+𝛽1x1+𝛽2x2)

Example DatasetΒΆ

Clearwater data - downloaded from link: https://sgsup.asu.edu/sparc/multiscale-gwrΒΆ

In [3]:
data_p = pd.read_csv("C:/Users/msachde1/Downloads/logistic_mgwr_data/landslides.csv") 
coords = list(zip(data_p['X'],data_p['Y']))
y = np.array(data_p['Landslid']).reshape((-1,1)) 
elev = np.array(data_p['Elev']).reshape((-1,1))
slope = np.array(data_p['Slope']).reshape((-1,1))
SinAspct = np.array(data_p['SinAspct']).reshape(-1,1)
CosAspct = np.array(data_p['CosAspct']).reshape(-1,1)
X = np.hstack([elev,slope,SinAspct,CosAspct])
x = slope

X_std = (X-X.mean(axis=0))/X.std(axis=0)
x_std = (x-x.mean(axis=0))/x.std(axis=0)
y_std = (y-y.mean(axis=0))/y.std(axis=0)

Helper functionsΒΆ

Hardcoded here for simplicity in the notebook workflow

Please note: A separate bw_func_b will not be required when changes will be made in the repository

In [6]:
kernel='bisquare'
fixed=False
spherical=False
search_method='golden_section'
criterion='AICc'
interval=None
tol=1e-06
max_iter=200
X_glob=[]
In [7]:
def gwr_func(y, X, bw,family=Gaussian(),offset=None):
    return GWR(coords, y, X, bw, family,offset,kernel=kernel,
               fixed=fixed, constant=False,
               spherical=spherical, hat_matrix=False).fit(
                   lite=True, pool=pool)


def bw_func_b(coords,y, X):
    selector = Sel_BW(coords,y, X,family=Binomial(),offset=None, X_glob=[],
                      kernel=kernel, fixed=fixed,
                      constant=False, spherical=spherical)
    return selector

def bw_func_p(coords,y, X):
    selector = Sel_BW(coords,y, X,family=Poisson(),offset=off, X_glob=[],
                      kernel=kernel, fixed=fixed,
                      constant=False, spherical=spherical)
    return selector

def bw_func(coords,y,X):
    selector = Sel_BW(coords,y,X,X_glob=[],
                      kernel=kernel, fixed=fixed,
                      constant=False, spherical=spherical)
    return selector

def sel_func(bw_func, bw_min=None, bw_max=None):
    return bw_func.search(
        search_method=search_method, criterion=criterion,
        bw_min=bw_min, bw_max=bw_max, interval=interval, tol=tol,
        max_iter=max_iter, pool=pool, verbose=False)

Univariate exampleΒΆ

GWR model with independent variable, x = slopeΒΆ

In [14]:
bw_gwbr=Sel_BW(coords,y_std,x_std,family=Binomial(),constant=False).search()
In [15]:
gwbr_model=GWR(coords,y_std,x_std,bw=bw_gwbr,family=Binomial(),constant=False).fit()
In [16]:
bw_gwbr
Out[16]:
198.0

MGWR Binomial loop with one independent variable, x = slopeΒΆ

Edited multi_bw function - original function in https://github.com/pysal/mgwr/blob/master/mgwr/search.py#L167ΒΆ
In [17]:
def multi_bw(init,coords,y, X, n, k, family=Gaussian(),offset=None, tol=1e-06, max_iter=200, multi_bw_min=[None], multi_bw_max=[None],rss_score=False,bws_same_times=3,
                     verbose=False):
    
    if multi_bw_min==[None]:
        multi_bw_min = multi_bw_min*X.shape[1]
    
    if multi_bw_max==[None]:
        multi_bw_max = multi_bw_max*X.shape[1]
        
    if isinstance(family,spglm.family.Poisson):
        bw = sel_func(bw_func_p(coords,y,X))
        optim_model=gwr_func(y,X,bw,family=Poisson(),offset=offset)
        err = optim_model.resid_response.reshape((-1, 1))
        param = optim_model.params
        #This change for the Poisson model follows from equation (1) above
        XB = offset*np.exp(np.multiply(param, X))
    
    elif isinstance(family,spglm.family.Binomial):
        bw = sel_func(bw_func_b(coords,y,X))
        optim_model=gwr_func(y,X,bw,family=Binomial())
        err = optim_model.resid_response.reshape((-1, 1))
        param = optim_model.params
        #This change for the Binomial model follows from equation above
        XB = 1/(1+np.exp(-1*np.multiply(optim_model.params,X)))
        #print(XB)

        
    else:
        bw=sel_func(bw_func(coords,y,X))
        optim_model=gwr_func(y,X,bw)
        err = optim_model.resid_response.reshape((-1, 1))
        param = optim_model.params
        XB = np.multiply(param, X)
        
    bw_gwr = bw
    XB=XB
    
    if rss_score:
        rss = np.sum((err)**2)
    iters = 0
    scores = []
    delta = 1e6
    BWs = []
    bw_stable_counter = np.ones(k)
    bws = np.empty(k)

    try:
        from tqdm.auto import tqdm  #if they have it, let users have a progress bar
    except ImportError:

        def tqdm(x, desc=''):  #otherwise, just passthrough the range
            return x

    for iters in tqdm(range(1, max_iter + 1), desc='Backfitting'):
        new_XB = np.zeros_like(X)
        params = np.zeros_like(X)

        for j in range(k):
            temp_y = XB[:, j].reshape((-1, 1))
            temp_y = temp_y + err
            temp_X = X[:, j].reshape((-1, 1))
            
            #The step below will not be necessary once the bw_func is changed in the repo to accept family and offset as attributes
            if isinstance(family,spglm.family.Poisson):

                bw_class = bw_func_p(coords,temp_y, temp_X)
                
            elif isinstance(family,spglm.family.Binomial):
                
                bw_class = bw_func_b(coords,temp_y, temp_X)


                
            else:
                bw_class = bw_func(coords,temp_y, temp_X)


            if np.all(bw_stable_counter == bws_same_times):
                #If in backfitting, all bws not changing in bws_same_times (default 3) iterations
                bw = bws[j]
            else:
                bw = sel_func(bw_class, multi_bw_min[j], multi_bw_max[j])
                if bw == bws[j]:
                    bw_stable_counter[j] += 1
                else:
                    bw_stable_counter = np.ones(k)

            #Changed gwr_func to accept family and offset as attributes
            optim_model = gwr_func(temp_y, temp_X, bw,family,offset)
            err = optim_model.resid_response.reshape((-1, 1))
            param = optim_model.params.reshape((-1, ))
            new_XB[:, j] = optim_model.predy.reshape(-1)
            params[:, j] = param
            bws[j] = bw

        num = np.sum((new_XB - XB)**2) / n
        den = np.sum(np.sum(new_XB, axis=1)**2)
        score = (num / den)**0.5
        XB = new_XB

        if rss_score:
            predy = np.sum(np.multiply(params, X), axis=1).reshape((-1, 1))
            new_rss = np.sum((y - predy)**2)
            score = np.abs((new_rss - rss) / new_rss)
            rss = new_rss
        scores.append(deepcopy(score))
        delta = score
        BWs.append(deepcopy(bws))

        if verbose:
            print("Current iteration:", iters, ",SOC:", np.round(score, 7))
            print("Bandwidths:", ', '.join([str(bw) for bw in bws]))

        if delta < tol:
            break
            
    print("iters = "+str(iters))
    opt_bws = BWs[-1]
    print("opt_bws = "+str(opt_bws))
    return (opt_bws, np.array(BWs), np.array(scores), params, err, bw_gwr)
Running the function with family = Binomial()ΒΆ
In [18]:
bw_mgwbr = multi_bw(init=None,coords=coords,y=y_std, X=x_std, n=239, k=x.shape[1], family=Binomial())
iters = 1
opt_bws = [198.]
Running without family and offset attributes runs the normal MGWR loopΒΆ
In [18]:
bw_mgwr = multi_bw(init=None, coords=coords,y=y_std, X=x_std, n=262, k=x.shape[1])
iters = 1
opt_bws = [125.]

Parameter checkΒΆ

Difference in parameters from the GWR - Binomial model and MGWR Binomial modelΒΆ

In [21]:
(bw_mgwbr[3]==gwbr_model.params).all()
Out[21]:
True

The parameters are identical

Bandwidths checkΒΆ

In [22]:
bw_gwbr
Out[22]:
235.0
In [23]:
bw_mgwbr[0]
Out[23]:
array([235.])

The bandwidth from both models is the same